Interior state computation of nano structures
نویسندگان
چکیده
We are concerned with the computation of electronic and optical properties of quantum dots. Using the Energy SCAN (ESCAN) method with empirical pseudopotentials, we compute interior eigenstates around the band gap which determine their properties. Numerically, this interior Hermitian eigenvalue problem poses several challenges, both with respect to accuracy and efficiency. Using these criteria, we evaluate several state-of-the art preconditioned iterative eigensolvers on a range of CdSe quantum dots of various sizes. All the iterative eigensolvers are seeking for the minimal eigenvalues of the folded operator with reference shift in the band-gap. The tested methods include standard ConjugateGradient (CG)-based Rayleigh-Quotient minimization, Locally Optimal Block-Preconditioned CG (LOBPCG) and two variants of the Jacobi Davidson method: JDQMR and GD+1. Our experimental results conclude that the Jacobi Davidson method is often the fastest.
منابع مشابه
Synthesis of Different Copper Oxide Nano-Structures From Direct Thermal Decomposition of Porous Copper(ΙΙ) Metal-Organic Framework Precursors
Copper oxide nanostructures have been successfully synthesized via one-step solid-state thermolysis of two metal-organic frameworks, [Cu3(btc)2] (1) and [Cu(tpa).(dmf)] (2), (btc = benzene-1,3,5-tricarboxylate, tpa = therephtalic acid = 1,4-benzendicarboxylic acid and dmf = dimethyl formamide) under air atmosphere at 400, 500, and 600°C. It has also been found that the reaction temperature pla...
متن کاملA New Subdomain Method for Performances Computation in Interior Permanent-Magnet (IPM) Machines
In this research work, an improved two-dimensional semi-analytical subdomain based method for performance computation in IPM machine considering infinite-/finite-magnetic material permeability in pseudo-Cartesian coordinates by using hyperbolic functions has been presented. In the developed technique, all subdomains are divided into periodic or non-periodic regions with homogeneous or non-homog...
متن کاملState-of-the-art eigensolvers for electronic structure calculations of large scale nano-systems
The band edge states determine optical and electronic properties of semiconductor nano-structures which can be computed from an interior eigenproblem. We study the reliability and performance of state-of-the-art iterative eigensolvers on large quantum dots and wires, focusing on variants of preconditioned CG, Lanczos, and Davidson methods. One Davidson variant, the GD + k (Olsen) method, is ide...
متن کاملExperimental Investigation of Corrosion Cracking in Reinforced Concrete Beams Containing Nano Wollastonite
Cracking of the concrete cover due to corrosion is defined as the serviceability limit state of reinforced concrete structures. This study evaluated the influence of a mineral admixture i.e. nano wollastonite on corrosion performance and serviceability of reinforced concrete structures by performing an accelerated corrosion test on ten reinforced concrete beams under a sustained load. To do so,...
متن کاملTheoretical computation of the quantum transport of zigzag mono-layer Graphenes with various z-direction widths
The quantum transport computations have been carried on four different width of zigzag graphene using a nonequilibrium Green’s function method combined with density functional theory. The computed properties are included transmittance spectrum, electrical current and quantum conductance at the 0.3V as bias voltage. The considered systems were composed from one-layer graphene sheets differing w...
متن کامل